
Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

1 of 14 08/14/02 15:31

The HyperNews Linux KHG Discussion Pages

Design and Implementation of the Second Extended
Filesystem

Rémy Card, Laboratoire MASI--Institut Blaise Pascal, E-Mail: card@masi.ibp.fr , and
Theodore Ts’o, Massachussets Institute of Technology, E-Mail: tytso@mit.edu, and
Stephen Tweedie, University of Edinburgh, E-Mail: sct@dcs.ed.ac.uk

Introduction

Linux is a Unix-like operating system, which runs on PC-386 computers. It was implemented
first as extension to the Minix operating system [Tanenbaum 1987] and its first versions
included support for the Minix filesystem only. The Minix filesystem contains two serious
limitations: block addresses are stored in 16 bit integers, thus the maximal filesystem size is
restricted to 64 mega bytes, and directories contain fixed-size entries and the maximal file
name is 14 characters.

We have designed and implemented two new filesystems that are included in the standard
Linux kernel. These filesystems, called ‘ ‘Extended File System’ ’ (Ext fs) and ‘ ‘Second
Extended File System’ ’ (Ext2 fs) raise the limitations and add new features.

In this paper, we describe the history of Linux filesystems. We briefly introduce the
fundamental concepts implemented in Unix filesystems. We present the implementation of
the Virtual File System layer in Linux and we detail the Second Extended File System kernel
code and user mode tools. Last, we present performance measurements made on Linux and
BSD filesystems and we conclude with the current status of Ext2fs and the future directions.

History of Linux filesystems

In its very early days, Linux was cross-developed under the Minix operating system. It was
easier to share disks between the two systems than to design a new filesystem, so Linus
Torvalds decided to implement support for the Minix filesystem in Linux. The Minix
filesystem was an efficient and relatively bug-free piece of software.

However, the restrictions in the design of the Minix filesystem were too limiting, so people
started thinking and working on the implementation of new filesystems in Linux.

In order to ease the addition of new filesystems into the Linux kernel, a Virtual File System
(VFS) layer was developed. The VFS layer was initially written by Chris Provenzano, and
later rewritten by Linus Torvalds before it was integrated into the Linux kernel. It is
described in The Virtual File System.

After the integration of the VFS in the kernel, a new filesystem, called the ‘ ‘Extended File
System’ ’ was implemented in April 1992 and added to Linux 0.96c. This new filesystem
removed the two big Minix limitations: its maximal size was 2 giga bytes and the maximal
file name size was 255 characters. It was an improvement over the Minix filesystem but
some problems were still present in it. There was no support for the separate access, inode

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

2 of 14 08/14/02 15:31

modification, and data modification timestamps. The filesystem used linked lists to keep
track of free blocks and inodes and this produced bad performances: as the filesystem was
used, the lists became unsorted and the filesystem became fragmented.

As a response to these problems, two new filesytems were released in Alpha version in
January 1993: the Xia filesystem and the Second Extended File System. The Xia filesystem
was heavily based on the Minix filesystem kernel code and only added a few improvements
over this filesystem. Basically, it provided long file names, support for bigger partitions and
support for the three timestamps. On the other hand, Ext2fs was based on the Extfs code with
many reorganizations and many improvements. It had been designed with evolution in mind
and contained space for future improvements. It will be described with more details in The
Second Extended File System

When the two new filesystems were first released, they provided essentially the same
features. Due to its minimal design, Xia fs was more stable than Ext2fs. As the filesystems
were used more widely, bugs were fixed in Ext2fs and lots of improvements and new
features were integrated. Ext2fs is now very stable and has become the de-facto standard
Linux filesystem.

This table contains a summary of the features provided by the different filesystems:
Minix FS Ext FS Ext2 FS Xia FS

Max FS size 64 MB 2 GB 4 TB 2 GB

Max file size 64 MB 2 GB 2 GB 64 MB

Max file name 16/30 c 255 c 255 c 248 c

3 times support No No Yes Yes

Extensible No No Yes No

Var. block size No No Yes No

Maintained Yes No Yes ?

Basic File System Concepts

Every Linux filesystem implements a basic set of common concepts derivated from the Unix
operating system [Bach 1986] files are represented by inodes, directories are simply files
containing a list of entries and devices can be accessed by requesting I/O on special files.

Inodes

Each file is represented by a structure, called an inode. Each inode contains the description of
the file: file type, access rights, owners, timestamps, size, pointers to data blocks. The
addresses of data blocks allocated to a file are stored in its inode. When a user requests an I/O
operation on the file, the kernel code converts the current offset to a block number, uses this
number as an index in the block addresses table and reads or writes the physical block. This
figure represents the structure of an inode:

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

3 of 14 08/14/02 15:31

Directories

Directories are structured in a hierarchical tree. Each directory can contain files and
subdirectories.

Directories are implemented as a special type of files. Actually, a directory is a file
containing a list of entries. Each entry contains an inode number and a file name. When a
process uses a pathname, the kernel code searchs in the directories to find the corresponding
inode number. After the name has been converted to an inode number, the inode is loaded
into memory and is used by subsequent requests.

This figure represents a directory:

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

4 of 14 08/14/02 15:31

Links

Unix filesystems implement the concept of link. Several names can be associated with a
inode. The inode contains a field containing the number associated with the file. Adding a
link simply consists in creating a directory entry, where the inode number points to the inode,
and in incrementing the links count in the inode. When a link is deleted, i.e. when one uses
the rm command to remove a filename, the kernel decrements the links count and deallocates
the inode if this count becomes zero.

This type of link is called a hard link and can only be used within a single filesystem: it is
impossible to create cross-filesystem hard links. Moreover, hard links can only point on files:
a directory hard link cannot be created to prevent the apparition of a cycle in the directory
tree.

Another kind of links exists in most Unix filesystems. Symbolic links are simply files which
contain a filename. When the kernel encounters a symbolic link during a pathname to inode
conversion, it replaces the name of the link by its contents, i.e. the name of the target file, and
restarts the pathname interpretation. Since a symbolic link does not point to an inode, it is
possible to create cross-filesystems symbolic links. Symbolic links can point to any type of
file, even on nonexistent files. Symbolic links are very useful because they don’ t have the
limitations associated to hard links. However, they use some disk space, allocated for their
inode and their data blocks, and cause an overhead in the pathname to inode conversion
because the kernel has to restart the name interpretation when it encounters a symbolic link.

Device special files

In Unix-like operating systems, devices can be accessed via special files. A device special
file does not use any space on the filesystem. It is only an access point to the device driver.

Two types of special files exist: character and block special files. The former allows I/O
operations in character mode while the later requires data to be written in block mode via the
buffer cache functions. When an I/O request is made on a special file, it is forwarded to a
(pseudo) device driver. A special file is referenced by a major number, which identifies the
device type, and a minor number, which identifies the unit.

The Virtual File System

Principle

The Linux kernel contains a Virtual File System layer which is used during system calls
acting on files. The VFS is an indirection layer which handles the file oriented system calls
and calls the necessary functions in the physical filesystem code to do the I/O.

This indirection mechanism is frequently used in Unix-like operating systems to ease the
integration and the use of several filesystem types [Kleiman 1986, Seltzer et al. 1993].

When a process issues a file oriented system call, the kernel calls a function contained in the
VFS. This function handles the structure independent manipulations and redirects the call to
a function contained in the physical filesystem code, which is responsible for handling the
structure dependent operations. Filesystem code uses the buffer cache functions to request

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

5 of 14 08/14/02 15:31

I/O on devices. This scheme is illustrated in this figure:

The VFS structure

The VFS defines a set of functions that every filesystem has to implement. This interface is
made up of a set of operations associated to three kinds of objects: filesystems, inodes, and
open files.

The VFS knows about filesystem types supported in the kernel. It uses a table defined during
the kernel configuration. Each entry in this table describes a filesystem type: it contains the
name of the filesystem type and a pointer on a function called during the mount operation.
When a filesystem is to be mounted, the appropriate mount function is called. This function
is responsible for reading the superblock from the disk, initializing its internal variables, and

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

6 of 14 08/14/02 15:31

returning a mounted filesystem descriptor to the VFS. After the filesystem is mounted, the
VFS functions can use this descriptor to access the physical filesystem routines.

A mounted filesystem descriptor contains several kinds of data: informations that are
common to every filesystem types, pointers to functions provided by the physical filesystem
kernel code, and private data maintained by the physical filesystem code. The function
pointers contained in the filesystem descriptors allow the VFS to access the filesystem
internal routines.

Two other types of descriptors are used by the VFS: an inode descriptor and an open file
descriptor. Each descriptor contains informations related to files in use and a set of operations
provided by the physical filesystem code. While the inode descriptor contains pointers to
functions that can be used to act on any file (e.g. create, unlink), the file descriptors
contains pointer to functions which can only act on open files (e.g. read, write).

The Second Extended File System

Motivations

The Second Extended File System has been designed and implemented to fix some problems
present in the first Extended File System. Our goal was to provide a powerful filesystem,
which implements Unix file semantics and offers advanced features.

Of course, we wanted to Ext2fs to have excellent performance. We also wanted to provide a
very robust filesystem in order to reduce the risk of data loss in intensive use. Last, but not
least, Ext2fs had to include provision for extensions to allow users to benefit from new
features without reformatting their filesystem.

‘‘Standard’’ Ext2fs features

The Ext2fs supports standard Unix file types: regular files, directories, device special files
and symbolic links.

Ext2fs is able to manage filesystems created on really big partitions. While the original
kernel code restricted the maximal filesystem size to 2 GB, recent work in the VFS layer
have raised this limit to 4 TB. Thus, it is now possible to use big disks without the need of
creating many partitions.

Ext2fs provides long file names. It uses variable length directory entries. The maximal file
name size is 255 characters. This limit could be extended to 1012 if needed.

Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocks are
reserved. This allows the administrator to recover easily from situations where user processes
fill up filesystems.

‘‘Advanced’’ Ext2fs features

In addition to the standard Unix features, Ext2fs supports some extensions which are not
usually present in Unix filesystems.

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

7 of 14 08/14/02 15:31

File attributes allow the users to modify the kernel behavior when acting on a set of files.
One can set attributes on a file or on a directory. In the later case, new files created in the
directory inherit these attributes.

BSD or System V Release 4 semantics can be selected at mount time. A mount option allows
the administrator to choose the file creation semantics. On a filesystem mounted with BSD
semantics, files are created with the same group id as their parent directory. System V
semantics are a bit more complex: if a directory has the setgid bit set, new files inherit the
group id of the directory and subdirectories inherit the group id and the setgid bit; in the other
case, files and subdirectories are created with the primary group id of the calling process.

BSD-like synchronous updates can be used in Ext2fs. A mount option allows the
administrator to request that metadata (inodes, bitmap blocks, indirect blocks and directory
blocks) be written synchronously on the disk when they are modified. This can be useful to
maintain a strict metadata consistency but this leads to poor performances. Actually, this
feature is not normally used, since in addition to the performance loss associated with using
synchronous updates of the metadata, it can cause corruption in the user data which will not
be flagged by the filesystem checker.

Ext2fs allows the administrator to choose the logical block size when creating the filesystem.
Block sizes can typically be 1024, 2048 and 4096 bytes. Using big block sizes can speed up
I/O since fewer I/O requests, and thus fewer disk head seeks, need to be done to access a file.
On the other hand, big blocks waste more disk space: on the average, the last block allocated
to a file is only half full, so as blocks get bigger, more space is wasted in the last block of
each file. In addition, most of the advantages of larger block sizes are obtained by Ext2
filesystem’s preallocation techniques (see section Performance optimizations.

Ext2fs implements fast symbolic links. A fast symbolic link does not use any data block on
the filesystem. The target name is not stored in a data block but in the inode itself. This
policy can save some disk space (no data block needs to be allocated) and speeds up link
operations (there is no need to read a data block when accessing such a link). Of course, the
space available in the inode is limited so not every link can be implemented as a fast
symbolic link. The maximal size of the target name in a fast symbolic link is 60 characters.
We plan to extend this scheme to small files in the near future.

Ext2fs keeps track of the filesystem state. A special field in the superblock is used by the
kernel code to indicate the status of the file system. When a filesystem is mounted in
read/write mode, its state is set to ‘ ‘Not Clean’ ’ . When it is unmounted or remounted in
read-only mode, its state is reset to ‘ ‘Clean’ ’ . At boot time, the filesystem checker uses this
information to decide if a filesystem must be checked. The kernel code also records errors in
this field. When an inconsistency is detected by the kernel code, the filesystem is marked as
‘ ‘Erroneous’ ’ . The filesystem checker tests this to force the check of the filesystem
regardless of its apparently clean state.

Always skipping filesystem checks may sometimes be dangerous, so Ext2fs provides two
ways to force checks at regular intervals. A mount counter is maintained in the superblock.
Each time the filesystem is mounted in read/write mode, this counter is incremented. When it
reaches a maximal value (also recorded in the superblock), the filesystem checker forces the
check even if the filesystem is ‘ ‘Clean’ ’ . A last check time and a maximal check interval are
also maintained in the superblock. These two fields allow the administrator to request
periodical checks. When the maximal check interval has been reached, the checker ignores
the filesystem state and forces a filesystem check. Ext2fs offers tools to tune the filesystem

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

8 of 14 08/14/02 15:31

behavior. The tune2fs program can be used to modify:

the error behavior. When an inconsistency is detected by the kernel code, the
filesystem is marked as ‘ ‘Erroneous’ ’ and one of the three following actions can be
done: continue normal execution, remount the filesystem in read-only mode to avoid
corrupting the filesystem, make the kernel panic and reboot to run the filesystem
checker.
the maximal mount count.
the maximal check interval.
the number of logical blocks reserved for the super user.

Mount options can also be used to change the kernel error behavior.

An attribute allows the users to request secure deletion on files. When such a file is deleted,
random data is written in the disk blocks previously allocated to the file. This prevents
malicious people from gaining access to the previous content of the file by using a disk
editor.

Last, new types of files inspired from the 4.4 BSD filesystem have recently been added to
Ext2fs. Immutable files can only be read: nobody can write or delete them. This can be used
to protect sensitive configuration files. Append-only files can be opened in write mode but
data is always appended at the end of the file. Like immutable files, they cannot be deleted or
renamed. This is especially useful for log files which can only grow.

Physical Structure

The physical structure of Ext2 filesystems has been strongly influenced by the layout of the
BSD filesystem [McKusick et al. 1984]. A filesystem is made up of block groups. Block
groups are analogous to BSD FFS’s cylinder groups. However, block groups are not tied to
the physical layout of the blocks on the disk, since modern drives tend to be optimized for
sequential access and hide their physical geometry to the operating system.

The physical structure of a filesystem is represented in this table:
Boot
Sector

Block
Group 1

Block
Group 2

...

...
Block
Group N

Each block group contains a redundant copy of crucial filesystem control informations
(superblock and the filesystem descriptors) and also contains a part of the filesystem (a block
bitmap, an inode bitmap, a piece of the inode table, and data blocks). The structure of a block
group is represented in this table:
Super
Block

FS
descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

Data
Blocks

Using block groups is a big win in terms of reliability: since the control structures are
replicated in each block group, it is easy to recover from a filesystem where the superblock
has been corrupted. This structure also helps to get good performances: by reducing the
distance between the inode table and the data blocks, it is possible to reduce the disk head
seeks during I/O on files.

In Ext2fs, directories are managed as linked lists of variable length entries. Each entry

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

9 of 14 08/14/02 15:31

contains the inode number, the entry length, the file name and its length. By using variable
length entries, it is possible to implement long file names without wasting disk space in
directories. The structure of a directory entry is shown in this table:
inode numberentry lengthname lengthfilename

As an example, The next table represents the structure of a directory containing three files:
file1, long_file_name, and f2:
i1 16 05 file1

i2 40 14 long_file_name

i3 12 02 f2

Performance optimizations

The Ext2fs kernel code contains many performance optimizations, which tend to improve I/O
speed when reading and writing files.

Ext2fs takes advantage of the buffer cache management by performing readaheads: when a
block has to be read, the kernel code requests the I/O on several contiguous blocks. This way,
it tries to ensure that the next block to read will already be loaded into the buffer cache.
Readaheads are normally performed during sequential reads on files and Ext2fs extends them
to directory reads, either explicit reads (readdir(2) calls) or implicit ones (namei kernel
directory lookup).

Ext2fs also contains many allocation optimizations. Block groups are used to cluster together
related inodes and data: the kernel code always tries to allocate data blocks for a file in the
same group as its inode. This is intended to reduce the disk head seeks made when the kernel
reads an inode and its data blocks.

When writing data to a file, Ext2fs preallocates up to 8 adjacent blocks when allocating a
new block. Preallocation hit rates are around 75% even on very full filesystems. This
preallocation achieves good write performances under heavy load. It also allows contiguous
blocks to be allocated to files, thus it speeds up the future sequential reads.

These two allocation optimizations produce a very good locality of:

related files through block groups
related blocks through the 8 bits clustering of block allocations.

The Ext2fs library

To allow user mode programs to manipulate the control structures of an Ext2 filesystem, the
libext2fs library was developed. This library provides routines which can be used to examine
and modify the data of an Ext2 filesystem, by accessing the filesystem directly through the
physical device.

The Ext2fs library was designed to allow maximal code reuse through the use of software
abstraction techniques. For example, several different iterators are provided. A program can
simply pass in a function to ext2fs_block_interate(), which will be called for each

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

10 of 14 08/14/02 15:31

block in an inode. Another iterator function allows an user-provided function to be called for
each file in a directory.

Many of the Ext2fs utilities (mke2fs, e2fsck, tune2fs, dumpe2fs, and debugfs) use the
Ext2fs library. This greatly simplifies the maintainance of these utilities, since any changes to
reflect new features in the Ext2 filesystem format need only be made in one place--in the
Ext2fs library. This code reuse also results in smaller binaries, since the Ext2fs library can be
built as a shared library image.

Because the interfaces of the Ext2fs library are so abstract and general, new programs which
require direct access to the Ext2fs filesystem can very easily be written. For example, the
Ext2fs library was used during the port of the 4.4BSD dump and restore backup utilities.
Very few changes were needed to adapt these tools to Linux: only a few filesystem
dependent functions had to be replaced by calls to the Ext2fs library.

The Ext2fs library provides access to several classes of operations. The first class are the
filesystem-oriented operations. A program can open and close a filesystem, read and write
the bitmaps, and create a new filesystem on the disk. Functions are also available to
manipulate the filesystem’s bad blocks list.

The second class of operations affect directories. A caller of the Ext2fs library can create and
expand directories, as well as add and remove directory entries. Functions are also provided
to both resolve a pathname to an inode number, and to determine a pathname of an inode
given its inode number.

The final class of operations are oriented around inodes. It is possible to scan the inode table,
read and write inodes, and scan through all of the blocks in an inode. Allocation and
deallocation routines are also available and allow user mode programs to allocate and free
blocks and inodes.

The Ext2fs tools

Powerful management tools have been developed for Ext2fs. These utilities are used to
create, modify, and correct any inconsistencies in Ext2 filesystems. The mke2fs program is
used to initialize a partition to contain an empty Ext2 filesystem.

The tune2fs program can be used to modify the filesystem parameters. As explained in
section ‘‘Advanced’’ Ext2fs features, it can change the error behavior, the maximal mount
count, the maximal check interval, and the number of logical blocks reserved for the super
user.

The most interesting tool is probably the filesystem checker. E2fsck is intended to repair
filesystem inconsistencies after an unclean shutdown of the system. The original version of
e2fsck was based on Linus Torvald’s fsck program for the Minix filesystem. However, the
current version of e2fsck was rewritten from scratch, using the Ext2fs library, and is much
faster and can correct more filesystem inconsistencies than the original version.

The e2fsck program is designed to run as quickly as possible. Since filesystem checkers
tend to be disk bound, this was done by optimizing the algorithms used by e2fsck so that
filesystem structures are not repeatedly accessed from the disk. In addition, the order in
which inodes and directories are checked are sorted by block number to reduce the amount of

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

11 of 14 08/14/02 15:31

time in disk seeks. Many of these ideas were originally explored by [Bina and Emrath 1989]
although they have since been further refined by the authors.

In pass 1, e2fsck iterates over all of the inodes in the filesystem and performs checks over
each inode as an unconnected object in the filesystem. That is, these checks do not require
any cross-checks to other filesystem objects. Examples of such checks include making sure
the file mode is legal, and that all of the blocks in the inode are valid block numbers. During
pass 1, bitmaps indicating which blocks and inodes are in use are compiled.

If e2fsck notices data blocks which are claimed by more than one inode, it invokes passes
1B through 1D to resolve these conflicts, either by cloning the shared blocks so that each
inode has its own copy of the shared block, or by deallocating one or more of the inodes.

Pass 1 takes the longest time to execute, since all of the inodes have to be read into memory
and checked. To reduce the I/O time necessary in future passes, critical filesystem
information is cached in memory. The most important example of this technique is the
location on disk of all of the directory blocks on the filesystem. This obviates the need to
re-read the directory inodes structures during pass 2 to obtain this information.

Pass 2 checks directories as unconnected objects. Since directory entries do not span disk
blocks, each directory block can be checked individually without reference to other directory
blocks. This allows e2fsck to sort all of the directory blocks by block number, and check
directory blocks in ascending order, thus decreasing disk seek time. The directory blocks are
checked to make sure that the directory entries are valid, and contain references to inode
numbers which are in use (as determined by pass 1).

For the first directory block in each directory inode, the ‘ .’ and ‘ ..’ entries are checked to
make sure they exist, and that the inode number for the ‘ .’ entry matches the current
directory. (The inode number for the ‘ ..’ entry is not checked until pass 3.)

Pass 2 also caches information concerning the parent directory in which each directory is
linked. (If a directory is referenced by more than one directory, the second reference of the
directory is treated as an illegal hard link, and it is removed).

It is noteworthy to note that at the end of pass 2, nearly all of the disk I/O which e2fsck
needs to perform is complete. Information required by passes 3, 4 and 5 are cached in
memory; hence, the remaining passes of e2fsck are largely CPU bound, and take less than
5-10% of the total running time of e2fsck.

In pass 3, the directory connectivity is checked. E2fsck traces the path of each directory
back to the root, using information that was cached during pass 2. At this time, the ‘ ..’ entry
for each directory is also checked to make sure it is valid. Any directories which can not be
traced back to the root are linked to the /lost+found directory.

In pass 4, e2fsck checks the reference counts for all inodes, by iterating over all the inodes
and comparing the link counts (which were cached in pass 1) against internal counters
computed during passes 2 and 3. Any undeleted files with a zero link count is also linked to
the /lost+found directory during this pass.

Finally, in pass 5, e2fsck checks the validity of the filesystem summary information. It
compares the block and inode bitmaps which were constructed during the previous passes
against the actual bitmaps on the filesystem, and corrects the on-disk copies if necessary.

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

12 of 14 08/14/02 15:31

The filesystem debugger is another useful tool. Debugfs is a powerful program which can
be used to examine and change the state of a filesystem. Basically, it provides an interactive
interface to the Ext2fs library: commands typed by the user are translated into calls to the
library routines.

Debugfs can be used to examine the internal structures of a filesystem, manually repair a
corrupted filesystem, or create test cases for e2fsck. Unfortunately, this program can be
dangerous if it is used by people who do not know what they are doing; it is very easy to
destroy a filesystem with this tool. For this reason, debugfs opens filesytems for read-only
access by default. The user must explicitly specify the -w flag in order to use debugfs to
open a filesystem for read/wite access.

Performance Measurements

Description of the benchmarks

We have run benchmarks to measure filesystem performances. Benchmarks have been made
on a middle-end PC, based on a i486DX2 processor, using 16 MB of memory and two 420
MB IDE disks. The tests were run on Ext2 fs and Xia fs (Linux 1.1.62) and on the BSD Fast
filesystem in asynchronous and synchronous mode (FreeBSD 2.0 Alpha--based on the
4.4BSD Lite distribution).

We have run two different benchmarks. The Bonnie benchmark tests I/O speed on a big
file--the file size was set to 60 MB during the tests. It writes data to the file using character
based I/O, rewrites the contents of the whole file, writes data using block based I/O, reads the
file using character I/O and block I/O, and seeks into the file. The Andrew Benchmark was
developed at Carneggie Mellon University and has been used at the University of Berkeley to
benchmark BSD FFS and LFS. It runs in five phases: it creates a directory hierarchy, makes a
copy of the data, recursively examine the status of every file, examine every byte of every
file, and compile several of the files.

Results of the Bonnie benchmark

The results of the Bonnie benchmark are presented in this table:
Char Write

(KB/s)
Block Write

(KB/s)
Rewrite
(KB/s)

Char Read
(KB/s)

Block Read
(KB/s)

BSD Async 710 684 401 721 888

BSD Sync 699 677 400 710 878

Ext2 fs 452 1237 536 397 1033

Xia fs 440 704 380 366 895

The results are very good in block oriented I/O: Ext2 fs outperforms other filesystems. This
is clearly a benefit of the optimizations included in the allocation routines. Writes are fast
because data is written in cluster mode. Reads are fast because contiguous blocks have been
allocated to the file. Thus there is no head seek between two reads and the readahead
optimizations can be fully used.

On the other hand, performance is better in the FreeBSD operating system in character

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

13 of 14 08/14/02 15:31

oriented I/O. This is probably due to the fact that FreeBSD and Linux do not use the same
stdio routines in their respective C libraries. It seems that FreeBSD has a more optimized
character I/O library and its performance is better.

Results of the Andrew benchmark

The results of the Andrew benchmark are presented in this table:
P1 Create

(ms)
P2 Copy

(ms)
P3 Stat

(ms)
P4 Grep

(ms)
P5 Compile

(ms)

BSD Async 2203 7391 6319 17466 75314

BSD Sync 2330 7732 6317 17499 75681

Ext2 fs 790 4791 7235 11685 63210

Xia fs 934 5402 8400 12912 66997

The results of the two first passes show that Linux benefits from its asynchronous metadata
I/O. In passes 1 and 2, directories and files are created and BSD synchronously writes inodes
and directory entries. There is an anomaly, though: even in asynchronous mode, the
performance under BSD is poor. We suspect that the asynchronous support under FreeBSD is
not fully implemented.

In pass 3, the Linux and BSD times are very similar. This is a big progress against the same
benchmark run six months ago. While BSD used to outperform Linux by a factor of 3 in this
test, the addition of a file name cache in the VFS has fixed this performance problem.

In passes 4 and 5, Linux is faster than FreeBSD mainly because it uses an unified buffer
cache management. The buffer cache space can grow when needed and use more memory
than the one in FreeBSD, which uses a fixed size buffer cache. Comparison of the Ext2fs and
Xiafs results shows that the optimizations included in Ext2fs are really useful: the
performance gain between Ext2fs and Xiafs is around 5-10%.

Conclusion

The Second Extended File System is probably the most widely used filesystem in the Linux
community. It provides standard Unix file semantics and advanced features. Moreover,
thanks to the optimizations included in the kernel code, it is robust and offers excellent
performance.

Since Ext2fs has been designed with evolution in mind, it contains hooks that can be used to
add new features. Some people are working on extensions to the current filesystem: access
control lists conforming to the Posix semantics [IEEE 1992], undelete, and on-the-fly file
compression.

Ext2fs was first developed and integrated in the Linux kernel and is now actively being
ported to other operating systems. An Ext2fs server running on top of the GNU Hurd has
been implemented. People are also working on an Ext2fs port in the LITES server, running
on top of the Mach microkernel [Accetta et al. 1986], and in the VSTa operating system.
Last, but not least, Ext2fs is an important part of the Masix operating system [Card et al.
1993], currently under development by one of the authors.

Design and Implementation of the Second Extended Filesystem file:///root/www.tldp.org/LDP/khg/HyperNews/get/fs/ext2intro.html

14 of 14 08/14/02 15:31

Acknowledgments

The Ext2fs kernel code and tools have been written mostly by the authors of this paper. Some
other people have also contributed to the development of Ext2fs either by suggesting new
features or by sending patches. We want to thank these contributors for their help.

References

[Accetta et al. 1986] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young. Mach: A New Kernel Foundation For UNIX Development. In Proceedings
of the USENIX 1986 Summer Conference, June 1986.

[Bach 1986] M. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[Bina and Emrath 1989] E. Bina and P. Emrath. A Faster fsck for BSD Unix. In
Proceedings of the USENIX Winter Conference, January 1989.

[Card et al. 1993] R. Card, E. Commelin, S. Dayras, and F. Mével. The MASIX
Multi-Server Operating System. In OSF Workshop on Microkernel Technology for
Distributed Systems, June 1993.

[IEEE 1992] SECURITY INTERFACE for the Portable Operating System Interface for
Computer Environments - Draft 13. Institute of Electrical and Electronics Engineers, Inc,
1992.

[Kleiman 1986] S. Kleiman. Vnodes: An Architecture for Multiple File System Types in Sun
UNIX. In Proceedings of the Summer USENIX Conference, pages 260--269, June 1986.

[McKusick et al. 1984] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast File System
for UNIX. ACM Transactions on Computer Systems, 2(3):181--197, August 1984.

[Seltzer et al. 1993] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An Implementation
of a Log-Structured File System for UNIX. In Proceedings of the USENIX Winter
Conference, January 1993.

[Tanenbaum 1987] A. Tanenbaum. Operating Systems: Design and Implementation.
Prentice Hall, 1987.

