

[index | glossary | news | downloads | links]

HTTP
working
HTTP/0.9
HTTP/1.0
HTTP/1.1
HTTP/1.0 status
HTTP/1.1 status
HTTP/1.1 directives

news
glossary
links
downloads

credits
contact

search

last update
19/02/2003

 HTTP/1.0

The successor of HTTP/0.9

What improvements does HTTP/1.0 bring with regard to HTTP/0.9? It first eases
web surfing: it is able to work with cache syst ems (even if the mechanism stays
quite simple). It is also possible to send data to a server (since the new POST
method). HTTP/1.0 is also able to recignize when a request did not work (the
famous "404 not Found" message). Finally it allows users to authenticate, for
instance to access a hidden part of a web site.

Example of HTTP/1.0 request

Regarding HTTP/0.9, HTTP/1.0 brings a real innovation regarding the form of a
request, and especially the form of the reply:

$ telnet www2.themanualpage.org 80
Trying...
Connected to www2.themanualpage.org.
Escape character is '^]'.
GET http://www2.themanualpage.org/http/hello.txt HTTP/1.0
User-Agent: Mozilla/4.03 [fr]

HTTP/1.1 200 OK
Date: Thu, 20 Jul 2000 06:43:02 GMT
Server: Apache/1.3.12 (Unix) PHP/3.0.9
Last-Modified: Mon, 17 Jul 2000 15:55:03 GMT
Content-Type: text/plain

Hello

Connection closed by foreign host.

We immediately notice that there is much more information in this request than in
a HTTP/0.9 request. Let's first notice a "HTTP/1.0" at the end of the first line. This is
used to tell the server that we would like to speak HTTP/1.0 with in for this request.
It will be same with HT T P/1.1 and also in all likelihood with any other new version
of HTTP. In this example the server will actually reply in HTTP/1.1. This can
happen...

The second (and very important) difference is that we also say what web browser
we are using... We are adding data in the request! We will see later what other kind
of data with what we call the request 's header.

The third difference is also very important: the server says a lot of things (with
direct ives) before saying what we are waiting for. Another header!

Finally, (at last!) we get the file (the so-called ent it y). Just straigh after the server

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

1 of 7 09/10/2008 04:22 PM

cuts the connection.

Requests

Present at ion

An HT T P/1.0 request is made up of 3 element s: a met hod (t o say
what we are doing), immediat ely followed by headers (t o specify t he
request and t he possible dat a), an ext ra line break and f inaly t he
possible ent it y's body (for example t he cont ent of a form). We will
see lat er t hat t he headers are also made up of 3 part s (t he last
part is opt ional and specif ies t he possible following dat a). In any
case, we can sum up all t his by t he following POST request (t he most
complet e t ype of request):

Met hods

There are 3 kinds of requests in HTTP/1.0 (3 different methods): the GET, HEAD and
POST methods.

The GET method is the same as in HTTP/0.9: it is used to retrieve the document
specified by the URI.

The role of the HEAD method will be explain in the part dealing with caches. Shortly
speaking, this method is used to only get the header part of a complete reply.

The POST method is actually much more interesting because it is the one used to
send data to a server. It is now possible to use huge and complete forms in web
pages. We send a certain amount of data to the program specified in the URL. This
data is sent at the same time as the request in what we call the body of t he
ent it y (or of the request).

Let's speak now about a problem with HTTP/1.0: it is not able to handle URLs on a
virtual server configuration. In concrete terms if we do a HTTP/1.0 request on a
machine that hosts www.bar.com and foo.bar.com (this could happen) to simply
retrieve the file called /index.html (the request is something like: GET /index.html
HTTP/1.0), the server is not able to know if it should send /index.html from
www.bar.com or foo.bar.com... Paths must be complete with HTTP/1.0 (GET
http://foo.bar.com/index.html HTTP/1.0).

Headers

When we send a request to a server, one must at first glance send a header to
specify what we are requesting. This header is actually optional: for backward
compatibility reasons, we can directly finish a request by striking twice the enter

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

2 of 7 09/10/2008 04:22 PM

key just after the first line. Anyway, a header is divided into 3 specific parts:

generic header that concerns the request or the reply,
request 's header that directly concerns the request itself,
ent it y's header that concerns the possible data we send (meta
information).

The generic header is mainly made up of the date and time at which we do the
request (the directive "Date:").

We can specify 5 different things in the request 's header:

direct ive meaning

From: says the e-mail address of the person who is using the web
browser. This could pose problems of private life respect.

Referer: URI of the object that refers to the current request (for instance
it is the URL of the page that contains the link you have just
clicked on)

User-Agent: the web browser ID. Is used to adapt a reply to the kind of web
browser.

Authorization: used for authentification

If-Modified-
Since:

used to make condit ional GET requests

Finally, the optional ent it y's header deals with the optional data. The web
browser adds it only when it sends data to a server with the POST method. The main
directives used with it are the same as those used by the server:

direct ive meaning

Content-Type: the type of the data (MIME type: text/html, image/jpeg...)

Content-Length: length (in byte) of the data

Content-
Encoding:

used if the data has been coded or compressed (x-gz ip for
instance)

What is interesting is that we can send data different from the one contained in a
form, files for example (this is how we can send attached document with
web-based e-mail clients, like Hotmail).

T he ent it y's body

There is a body only when one sends data with the POST method (see HTML forms
to learn how to use it). In this case we must add the Content-Type and Content-
Length directives in the headers of the request. Once all this is provided, we fill in
the entity's body with the message to send. Just as a server does, a line break must
stand between the request's header and the entity's body (see below).

Server's reply

Present at ion

The HTTP/1.0 response of a server is similar to the HTTP/1.0 request showed
above, except that the very first line is a st at us. The rest (headers and entity's
body) works more or less the same way.

T he st at us

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

3 of 7 09/10/2008 04:22 PM

Now, with HTTP/1.0, the web client is aware of the type of the reply, thanks to the
reply's header. The very first line of the header part of the request says how the
request was treated. The reply starts with something like:

HTTP/1.0 200 OK

There are 3 parts in this (small) line:

the HTTP version used by the server for its reply,
the numerical status of the reply,
the human readable status of the reply.

The status exactly says how the request was treated. The most famous one is "404
Not Found". There are 5 classes of status:

1xx: not used in HTTP/1.0
2xx: request successfully treated (hence the "200 OK" status)
3xx: redirection. The request was not treated but the server knows where it
could be fulfilled
4xx: wrong request (wrong syntax for instance, hencec the "404 Not Found"
that means "you should learn how to type a correct URI!")
5xx: correct request but not satisfied (problem with the server, not
implemented yet...)

HT T P/1.0 st at ut s: very useful to understand what happened.

Reply's header

Just like the web browser, the server says things quite useful things in this part. The
reply's header is also splitted into 3 parts, the same 3 parts as those used in the
client's request.

The generic header consists of these 2 fields:

direct ive meaning

Date: gives the date when the reply was sent

Pragma: defines specific behaviours. The only behaviour defined on the
RFC1945 is "no-cache", which means that the replied document must
not be cached (see cache management).

The reply's header consists of 3 different fields:

direct ive meaning

Location: the absolute URI of a resource

Server: contains information about the HTTP server that is replying
(for instance: Apache/1.3.12)

WWW-Authenticate: asks for the user to authenticate

The ent it y's header can contain these fields:

direct ive meaning

Content-Type: like the client, specifies the type of data the server is sending

Content-Length: the length of the entity (in byte)

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

4 of 7 09/10/2008 04:22 PM

Content-
Encoding:

tells if the data is encoded and how

Expires: expiration date of the sent resource. Useful with caches.

Last-Modified: last update date and time. Also used with caches.

Allow: list of usable methods to access the resource (typically HEAD
and GET)

It is also possible to use directives not defined by the RFC1945 (extension-header).

T he ent it y's body

It is simply the result of the request (generally the HTML page). From time to time,
there is no body, for instance when we have done a HEAD request. It is also the case
when there is a "404 Not Found".

Only important point: the server must send a Content-Length if it sends a
document.

Cache management

What is t his?

A cache is a sort of "buffer" or temporary memory: somewhere a machine stores
in its memory some documents, so that when a request is asking for an already
cached document (document stored in the cache), we would rather send this
document instead of making a complete (and long) request to the server. This is
very interesting for very requested documents; this can reduce the network traffic.

The trick consists of knowing if the document has been updated. The following
diagram shows the route followed by a resource when performing a request on it:

Actually, the client makes its request to a proxy server or any other cache system.
Then this proxy is going to guess if the requested document (which is also in its
cache) has been updated. To do so, it is going to use the directives it got when it
asked for the document for the first time. If it knows nothing about the document, it
may perform a HEAD request. According to the reply, the proxy is able to know if it
should ask for a new version or simply send the version it has in its cache.
Fortunately this latter case is the most frequent one, and therefore we save time
and network load.

New direct ives

HTTP/1.0 introduces special directives, such as Date, Expires or Last-Modified to
optimize cache systems; caches are then able to know when a cached document
has been last updated, calculate how long a document should stay in the cache, or
simply know when it must ask for a new version (Expires directive).

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

5 of 7 09/10/2008 04:22 PM

T he method

The first idea to know is an entity has been update since we last asked for it is to
use the new HEAD method.

This method is used to get the header part of a complet GET request on a given
resource. This is very useful to get the last update date, and then to know if the
document has changed or not. The key point is that asking for a header is shorter
than asking for the complet document since there is no entity body.

Condit ional GET request s

HTTP/1.0 also introduces another nice cache feature: a conditional GET request.
This is performed (once again!) with a special directive: If-Modified-Since.

A conditional GET request will ask the server to send the document if and only if this
document has changed since the specified date. For the client, it is just a matter of
sending the date at which it last got the document. If the resource has not
changed, the server just sends a very short "HTTP/1.0 304 Not Modified" and the
client simply uses the version it already has.

Non cachable ent it ies

Obviously, some document must not be cached (for instance results of CGI scripts
that depend on the data the client sends). To specify a document must not be
cached, we use the special directive called Pragma: no-cache that asks
intermediate machines not to cache the document. In an HTML document, we can
specify this directive in a special meta tag. The other solution is to use a Expires
directive with an earlier date.

Authent icat ion

The last innovation of HTTP/1.0 is user's authentication. Indeed it is a very simple
mechanism, but it exists. This allows a protection of a specific part of a web site
(only an authorized person may access it).

When a client trys to access a protected resource, the server sends a "HTTP/a.0
401 Authorization Required" status with a WWW-Authenticate directive that tells the
client how to proceed for the authentication. At this time of the process, the client
asks the user to enter a login/password and sends this to the server. Then, the
server replys (or not) the requested resource.

Basically HTTP/1.0 offers only one way for authentication. An improvement of
HTTP/1.0 and the HTTP/1.1 will offer another one more efficient. The standard
authentication process is called basic authentication. It simply codes the
"login:password" string with a base64 coding. It is so simple that we can say the
login/password pair passes in clear on the network.

Restrict ions

HTTP/1.0 does not solve all the problems we had with HTTP/0.9. Indeed, we still
have the problem of multiple connections (the client opens several connection with
the server at the same time), despite the new keep-alive directive (few machines
understand it).

Furthermore HTTP/1.0 does not handle very well relative URLs. Indeed we must
write the complete (absolute) URL when a server hosts several virtual servers.

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

6 of 7 09/10/2008 04:22 PM

The "Basic" authentication method is too basic! A new method was introduced. It is
the "Digest" method, but we will speak about it in HT T P/1.1.

Fianlly, HTTP/1.0 manages caches in a quite simple way.

Conclusion: welcome to HT T P/1.1!

Reference

RFCs:

RFC1945: HTTP/1.0
RFC2617: Basic and Digest authentication methods

 print able format

Copyright © 2000-2002 t hemanualpage.org - This site is submissive to the t erms of the GNU GPL and FDL licences.

TmP - HTTP http://www2.themanualpage.org/http/http_http10.php3

7 of 7 09/10/2008 04:22 PM

