

[index | glossary | news | downloads | links]

networks
introduction
socioeconomic
aspects
classification
LAN topologies
concepts
network software
the OSI model [1/2]
the OSI model [2/2]
the TCP/IP model

news
glossary
links
downloads

credits
contact

search

last update
19/02/2003

 Network software

Not ion of protocol

In the previous chapit er, it was said that the communication system was in
charge of the information transfer and the right delivery to the final user. In this
context, it is necessary to set up rules so that both sender and receiver can
understand each other. In the same way, we saw it is necessary for users to agree
about the meaning of sent messages. In a more general way, the set of
transmission processes are managed by mechanisms called prot ocols.

Simple example of protocol: an ordinary conversation between two friends.
Actually, a given number of implicitly established rules regulates the conversation.
For instance, these rules are: don't speak both at the same time and speak about
the same subject. These rules form a protocol.

Layer st ructure and protocol hierarchies

The layer structure already appears in the previous example: communication rules
can be stacked as shown on the following outline:

Communications over networks work exactely the same way. In order to reduce the
design complexity of network software and obtain the independance between
software and hardware, we carry out a functional cutting of the whole
communication process into layers or abst ract ion levels. A layer corresponds
to a set of functions or processes coherent with each other and providing a given
global function. Two adjacent layers have independant functions but they
interconnect through what we call an int erface: layers exchange data through
interfaces. Let's take a concret example: a washing machine! Let's consider the
washing machine as a layer (its function is "to wash"). It is connected to two other
layers: the electricity layer and the water layer. Interfaces are the socket and plug
system and the water tube.

Protocols correspond to a given implementation of a layer. This model is actually
based on the famous saying: "divide to reign". The set of layers and protocols is
called net work archit ect ure. The set of protocols used by a system with one
protocol per layer is called the st ack of prot ocols (example of protocol stack:

TmP - Networks http://www2.themanualpage.org/networks/network...

1 of 5 09/10/2008 04:16 PM

TCP/IP).

To work, each layer uses the previous one. Each layer must provide some services
to the previous ones, without these latter to "know" the details of the
implementation of these services. This guarantee that the whole system is
modular and that implementations are independant with each other. In such a
system, the layer N of a machine is in charge of the communication with the layer
N of another machine using one or several protocols and underlying layers.

As we saw, 2 adjacent layers are connected together by an int erface. This
interface defines the services a lower layer provides to the upper layer. When
designing a network architecture, and still in order to respect the independance of
implementations, it is very important to define these interfaces. Layers must
therefore carry out a very well defined set of functions. Later, we will see interfaces
are developed around primit ives.

Principles of layer design

As a machine may run several processes (or programs) that may use the network
resources, and as a machine may communicate with many other processes, it is
essential that every layer has a mechanism ti identify senders (local processes)
and receivers (remote processes).

It is also advisable to think about data transmission rules. A communication may
indeed be carried out in many ways:

simplex communicat ion: the data is carried only in one direction,
semiduplex communicat ion: the data can be carried in both directions,
but not at the same time,
duplex communicat ion: the data can be carried in both directions at the
same time.

Then we must consider the quality of transmission: a layer must be able to detect
errors due to physical communication circuits. There are a lot of error detection and
correction systems, but both ends have to agree about the system to use. Besides,
ends must have a system that allows them to send to the other an
acknowledgment message to tell that the message has been correctly received.
There is actually another quality issue: preserving of the order of messages. The
sender must make possible for the receiver to reorder messages, for instance by
numbering messages, but this does not explain how to order messages effectively.

Still another important issue: some processes are not able to handle message of
any size. We must therefore provide deassembling, transmission and
reassembling mechanisms. Such mechanisms may also be useful for the opposite
problem: in order to improve the transmission rate, we may need to split a
message into smaller parts. The receiving end must then be able to reassemble
the small message into the big first one.

These issues are the most important we must consider when developing layer. We
may however consider some others: receiving end congestion (this happens for
instance when the sender is too fast), rational rule-based message routing,
multiplexing problems (especially for the physical layer) when the underlying layer
has a limited amount of transmission channels...

Services

Int erfaces and services

The goal of every layer is to provide services to the upper layer. In this case, we say

TmP - Networks http://www2.themanualpage.org/networks/network...

2 of 5 09/10/2008 04:16 PM

the underlying layer is a service provider to the upper layer, which is a service
user. Active elements of a layer are called ent it ies. These entities can be
software entities (a process for instance) or hardware entities (a chip for instance).
Entities from the same layer N of two different machines are called peer
ent it ies.

Services of a layer N can be reach using service access point s (SAP). Each SAP
is uniquely identified by an address. Typically, SAPs of the phone network are
phone sockets and addresses are simply phone numbers.

In order to make two adjacent layers to communicate, some rules must be set up
for the interface. An entity from the layer N+1 gives to an entity of the layer N an
Int erface Dat a Unit (IDU) through the SAP. The IDU is actually made up with 2
things: a Service Dat a Unit (SDU) and some Int erface Cont rol
Informat ion (ICI):

The SDU is the data that 2 peer entities exchange, but it is also what the layer N+1
of the sender gives to the layer N. The control information is used to help the lower
layer. It is for example the number of bytes contained in the SDU (this can be used
in the function that controls data integrity).

To send a SDU, a layer N might need to split it into several parts. When exchanging
this data with its peer entity, every piece of data is fitted with a Prot ocol Cont rol
Informat ion (PCI) contained in a header, and then sent as a Prot ocol Dat a
Unit (PDU). Headers are used by peer entities to carry their peer protocol. This PDU
then becomes the SDU for the layer N and is going to be sent to the layer N-1 via
the SAP. Here is how all this works:

TmP - Networks http://www2.themanualpage.org/networks/network...

3 of 5 09/10/2008 04:16 PM

Finally, all messages fit together. This mechanism is often described as a
wrapping mechanism.

Service primit ives

A service is formally by a set of primit ives or operations a user or other entities
can invoke to access the service. That is what materializes an interface. We
commonly classify service primitives into 4 classes:

primit ive meaning

request
an entity is requesting a service (we are
requesting a connection to a remote computer)

indication
an entity is informed of an event (the receiver
has just received a connection request)

response
an entity is responding to an event (the receiver
is sending the permission to connect)

confirm
an entity acknowledges the response to its
request (the sender acknoledge the permission
to connect to the remote host)

Most primitives need parameters. For instance, parameters of a CONNECT.request
(used to query a connection) are the machine you want to connect to, the service
you want to use (FTP, telnet...) and the maximum size of exchanged packets.

A acknowledged service is a service that requires a request, an indication, a
response and a confirm. A unacknowledged service is a service that requires
only a request and an indication. Typically, the service that establishes a
connection is an acknowledged service because the peer entity must agree to set
the connection. On the other hand, data transmission may be an unacknowledged
service, whether we want an acknowledgement or not.

TmP - Networks http://www2.themanualpage.org/networks/network...

4 of 5 09/10/2008 04:16 PM

On an implementation point of view, primitives correspond to functions we can use
in a program to access a given service.

services/prot ocols relat ions

A service is a set of primitives a layer provides to the upper layer. The service
defines the operations a layer may realize, but it does not tell how these
operations are really realized. The most characteristic element of a service is the
interface between two adjacent layers.

Conversely, a protocol is a set of rules that applies to the meaning and format of
messages exchanged between two peer entities. Entities uses protocols to
implement service specifications. A service may therefore remain the same with
two different protocols.

Protocols and services are different, but they are close to each other. We must not
confuse. A service is rather an abstract notion, although the protocol corresponds
to what really happens. This distinction actually answers to modern programming
and implementation requirements. It is equivalent to making the distinction
between an algorithm and its implementation.

connect ion-orient ed services and connect ionless services

These services are simply those we tackled in the previous chapit er. It is then
just a matter of reminding the main issues.

The connect ion-orient ed service requires a connectio to be set between two
points. The receiver then expects the sender to transmit data. At the end of the
transmission, the connection is stopped. Such a service is for example the
telephone: to use it, we must first take of the hook, and dial a number. The called
person picks up the phone and the connection is then set. The two speakers
converse until they hang up.

The connect ionless service is characterized by the independance of
transmitted messages. Someone can receive a message without being aware of it.
Messages can then follow different routes. The consequence is that we can receive
messages in an inverted order. The typical example for this kind of service is the
mail system: someone writes a letter and sends it without warning the addressee.
This letter may then arrive after a second letter the same guy may have sent to the
same addressee. Routes followed by these two letters may be different.

 print able format

 concept s t he OSI model

Copyright © 2000-2002 t hemanualpage.org - This site is submissive to the t erms of the GNU GPL and FDL licences.

TmP - Networks http://www2.themanualpage.org/networks/network...

5 of 5 09/10/2008 04:16 PM

